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Floating-Zoneis acrucible free technique to make feed rod Dr awback: oscillating flows can induce :

growing high qua!lty monocrystals. The poly'crystall' ne ~ “Hoat zone structural defectsin the, supposed, monocrystal . ’ = e,

feed rod changes its structure to monocrystaline during — —

its resolidification on the seed rod after traveling through — S~ e

the laterally heated float-zone, seed rod i ey i 5o i o 5 o o7

What is the mechanism that makes the flow to oscillate ?
Objective : Identification of the mechasim can be done by locating the most sensitive regions with respect to a punctual perturbation.

Mathematical model:  Navier-Stokes equation and heat equation. Boussinesq approximation
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Parameters: «Prandtl number Pr: V. Momentum diffusivity/ V. Heat diffusivity Numerical method: <Pseudo-spectral method with Tchebycheff polynomials
«Marangoni number Ma: V. Thermocapillary convection/ V. Heat diffusivity *Gauss-Radau grid along radial axis
A Aspect Ratio, fixed at 2 *Gauss-Lobatto grid along axial axis
n: Regul arisation parameter *Regularizing function f,, (z) = (1 — 22”’)2 is introduced
to avoid singularity problem at the corners
t t
Linearised equations: (U’?T) = (ﬁg,To) + 4, 0) Adjoint equations:
Steady state perturbation
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Eigenvectors “(w';, 6;) and associated eigenvalues \; are determined with an
Arnoldi method.
+o0 The eigenvalues of the adjoint system are opposite and conjugate to the

Decomposition of the perturbation on the eigenbasisis ‘(. 0)(t) = > ' (W, 0;)e™

eigenvalues of the linearised system. The corresponding e genvectorst (_ﬁfh é)}-)
=1

are such that : t Co
(‘) (7,8,) ) = 8
For agiven initial perturbation, we can determine the value of «,

<t(a>,9) (t = 0)|t(51?51)> =al

When the difference between )\, and ), is sufficiently high, the first eigenmode
stands alone until the incoming of the non-linearities. So, (@, 0)(t) ~ a," (@, 0;)e™!

Introduction of a scalar product to find ;. Scalar product is used to define the

adjoint system: B
N z [t ~ .
(w,0)| (u,é’) = uu + ww + 00  rdzdr
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Results: Stationnary perturbation Oscillatory perturbation
Pr=0.01 and Ma=106 Pr=0.002 and M a=130
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In the most sensitive region of the flow with respect to punctual temperature P — - o»;-;.'. ............. —
perturbation there is a vorticity structure with a maximum in the radial direction. It : !
can be indentified as an evidence of the Fjarteft stability criteriafor an invicid flow.
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Optimal punctua vorticity perturbation for stationnary flow is the most efficient
near the mid-plane and the axis whereas for the unstationnary perturbation is more ;
efficient near the walls. Energy anaysis shows that those regions are located 0
upstream of regions with high energy growth rate for the perturbation. b
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