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Abstract

The first transition of axi-symmetric thermocap-
illary convection flows in a floating zone breaks
the symmetry around its mid-plane. This is ob-
served on a very large region of Prandtl num-
ber values. A Hopf bifurcation is observed, giv-
ing rise to oscillatory flows, except for Pr ∈
[3.410−3, 3.1510−2] where a stationary transition
occurs.

1 Introduction

The floating zone is a crucible-free process used
to produce high-quality crystals. A molten zone
is created by a lateral heating, between a feed
and a single crystal rod, and held by capillary
forces. The translation of the material through
the heat flux induces the solidification of the crys-
tal. Temperature gradients induce surface tension
variations which are the source of thermocapil-
lary convection. In order to reduce buoyancy ef-
fects, experiments have been performed in a low
gravity environment and have demonstrated that
thermocapillary convection alone can induce de-
fects in the product due to flow instabilities. A
major goal is to identify the mechanisms leading
to the growth of those instabilities. The experi-
mental difficulty comes from the fact that mea-
surements in the core of the flow are usually lim-
ited to transparent fluids, that is having a Prandtl
number value (Pr), larger than 6 or so. However,
it has been shown that, just as well in real exper-
iments as in numerical experiences, performed
on the simplified half-zone model, the transitions

thresholds strongly depend on the Prandtl num-
ber value. It is thus interesting to study the nature
and thresholds of the instabilities of the thermo-
capillary flow in a full liquid bridge as a function
of the Prandtl number.

In the present contribution, we study the
perturbation of the axisymmetric steady state
through the 2D mode as a function of the Prandtl
and Marangoni number values. Chénier et al [2]
pointed out at Pr = 0.01 a steady 2-D transition,
breaking the liquid bridge symmetry about the
mid-plane, which is the basic hypothesis when
the half-zone configuration is used as a model of
the full zone. We will study the dependence of
the threshold Marangoni values and bifurcations
nature with respect to the Prandtl number value.
The growth rate of the destabilizing eigenmode is
analysed by an energy balance using a centrifugal
formulation.

2 The model

The model consists in a vertical cylindrical liquid
bridge of aspect ratio A = H/R, between two
isothermal parallel concentric rigid disks, of ra-
dius R, separated by a distance H , at the temper-
ature Tm. The geometrical configuration is pre-
sented in Fig.1 where er and ez are the radial and
axial unit vectors respectively, r and z being the
corresponding coordinates. The origin O is lo-
cated at the center of the full liquid bridge. The
free surface is non-deformable and heated with
a steady heating flux Q(z) symmetric about the
mid-plane defined by z = 0. The heat flux Q(z)
is equal to Q0 q(z), with Q0 the maximum heat
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flux density and q(z) the non-dimensional flux.
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FIG. 1. Geometrical configuration of the floating
zone

The length, temperature, velocity, pressure
and time scales respectively are R, ∆T =
Q0 R/λ, V = κ/R, ρ V 2 and R/V , where ρ
and λ, κ are the fluid density, the thermal con-
ductivity and the thermal diffusivity. The re-
duced temperature is Θ = (T − Tm)/∆T . Then,
non-dimensional parameters are introduced, the
Prandtl and the Marangoni numbers defined by
Pr = ν/κ and Ma = −(∂σ/∂T )|Tm

R∆T/µκ,
where σ, µ and ν respectively stand for the sur-
face tension, the dynamic and kinematic viscosi-
ties. The aspect ratio A is fixed to 2 in this
study. Gravity is absent. The fluid is governed
by the Navier-Stokes equations, the heat equation
and the continuity equation for an incompressible
fluid under the Boussinesq approximation. Those
non-dimensional 2-D equations are:

∂tV + (V.∇)V = −∇P + Pr∆V (1)

∂tΘ + V.∇Θ = ∆Θ (2)

∇.V = 0 (3)

with the boundary condition on z ± 1:

V = 0, Θ = 0 (4)

and on r = 1:

U = 0, ∂rW = −Ma∂zΘ, ∂rΘ = q(z) (5)

where V = Uer + Wez and Θ are respectively
the non-dimensional velocity and temperature.

The operators are defined as follows:

∇• = er∂r• + ez∂z• (6)

∆Θ = (1/r)∂r(r∂rΘ) + ∂2

zΘ (7)

∆V =
(

∆U − U/r2
)

er + ∆Wez (8)

∇.V = (1/r)∂r(rU) + ∂zW (9)

V.∇• = U∂r• + W∂z• (10)

The shape of the heat flux is given by:

q(z) =
(

1 − (z)2
)2

(11)

The mathematical system is solved with a
spectral collocation method on Gauss-Radau and
GaussLobatto points in respectively the radial
and axial directions. The steady flows are cal-
culated with a Newton method [6]. To deter-
mine whether the flow is stable or not, we per-
form a linear stability analysis around the steady
flow (V0, Θ0) using an Arnoldi method [4]. Then
the first eigenmodes of the steady flow are ob-
tained. The real part of the eigenvalue cancels
at the threshold Mac. This later is determined
by linear interpolation. The linearised equations
governing the perturbation (v, θ) are:

∂tv + (v.∇)V0+(V0.∇)v =

− ∇p + Pr∆v
(12)

∂tθ + v.∇Θ0 + V0.∇θ = ∆θ (13)

∇.v = 0 (14)

with the boundary condition on z ± 1:

v = 0, θ = 0 (15)

and on r = 1:

u = 0, ∂rw = −Ma∂zθ, ∂rθ = 0 (16)

where v = uer + wez and θ are respectively the
non-dimensional velocity and temperature of the
perturbation.

The model physical regularity assumes that
at both extremities where the free surface is in
contact with the fusion/solidification fronts, the
supplied heat flux and the flux of the vertical
momentum component must cancel. A simple
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way to regularize the stress condition is to in-
troduce a function that cancels at z = ±1, such
as fn(z) =

(

1 − z2n
)2

, n being a positive inte-
ger, here fixed to 13 according to the results of
Chénier et al. [2, 3].

The tools used to study the transition mech-
anisms consist in the analysis of the kinetic and
thermal energy growth rates of the perturbation.
Nienhüser et al [7] proposed a formulation of
the energy budget, independent of the coordinate
system, based on the velocity decomposition of
the perturbation, (v, θ), into parallel and perpen-
dicular components to the basic flow:

v = v⊥ + v‖ (17)

where

v‖ = [(v · V0)V0] /
∥

∥V
2

0

∥

∥ (18)

v⊥ = v − v‖ (19)

For a perturbation growth rate (i.e. eigenvalue)
λ, the kinetic Ėc and the thermal Ėθ growth rates
express as:

Ėc = −Du + Mz

+ I2

u + I3

u + I4

u + I5

u

= λ

∫

z

∫

r

(

u2 + w2
)

rdrdz

(20)

Ėθ = −Dθ + I1

θ + I2

θ

= λ

∫

z

∫

r

θ2 rdrdz
(21)

with

Du = Pr

∫

z

∫

r

[

((k/r)w)2

+ (∂zu − ∂rw)2

+ ((k/r)u)2
]

rdrdz

(22)

Dθ =

∫

r

∫

z

(

(∂rθ)
2 + (∂zθ)

2
)

rdrdz (23)

Mz = dq

∫

z

(w∂rw)r=1
dz (24)

I2

u = −

∫

z

∫

r

v⊥ · (v⊥ · ∇)V0 rdrdz

(25)

I3

u = −

∫

z

∫

r

v⊥ ·
(

v‖ · ∇
)

V0 rdrdz

(26)

I4

u = −

∫

z

∫

r

v‖ · (v⊥ · ∇)V0 rdrdz (27)

I5

u = −

∫

z

∫

r

v‖ ·
(

v‖ · ∇
)

V0 rdrdz (28)

I1

θ = −

∫

z

∫

r

θ (v⊥ · ∇) Θ0 rdrdz (29)

I2

θ = −

∫

z

∫

r

θ
(

v‖ · ∇
)

Θ0 rdrdz (30)

Du and Dθ are respectively the viscous and ther-
mal dissipation, Mz the work of the thermocapil-
lary stress on the free surface, Iu and Iθ the inter-
actions between the steady state and the pertur-
bation.

3 Results

Below the Mac transition threshold, the steady
state of the floating zone is composed of two coun
ter-rotating cells which, due to the axial sym-
metries of the cylindrical configuration and of
the boundary conditions, are symmetric with re-
spect to the z = 0 mid-plane. The radial ve-
locity and the temperature of the steady flow are
even functions with respect to z while the ax-
ial velocity is an odd function. The steady state
fields, at low and high Prandtl number values,
have been widely depicted by Kasperski at al [5].
At Pr = 0.01, the steady-state solution becomes
non-symmetric via a subcritical pitchfork bifur-
cation, followed by a saddle-node bifurcation [2].
We have expanded the analysis over a wide range
of Pr number. The threshold diagram of the
floating zone and the corresponding critical fre-
quency, in case of Hopf bifurcation, are respec-
tively shown in Fig. 2 and in Fig. 3. At low
Pr numbers, the threshold Mac depends linearly
on the Pr. There, the critical Reynolds number
Rec = Mac/Pr of the steady flow is rather con-
stant. This indicates that at low Pr number, the
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FIG. 2. Critical Mac value as a function of Pr
number

perturbation is hydrodynamic. At high Pr num-
bers, the threshold Mac ≈ 56500 depends no
more on the Pr number, indicating that the na-
ture of the perturbation is hydrothermal.
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FIG. 3. Critical frequency of the Hopf bifurca-
tion at the threshold

The bifurcation map is divided into several
regions, starting from the smallest Pr values:
- Pr ∈ [10−3, 3.4 10−3]: Hopf bifurcations,
- Pr ∈ [3.4 10−3, 3.15 10−2], Ma . 103: subcrit-
ical pitchfork bifurcations,
- Pr ∈ [1.9 10−2, 3.15 10−2], Ma & 103: restabi-
lizing pitchfork bifurcations (computations have
not been performed below 1.9 10−2),
- Pr ∈ [4 10−2, 1 10−1]: Hopf bifurcations,
- Pr ∈ [9, 100]: Hopf bifurcations.

Computations have not been achieved be-
tween the last two Hopf bifurcations, namely
Pr ∈ [1 10−1, 9]. Figure 4 and 5 display the
stream function or the temperature of the lead-
ing destabilizing modes, in four regions. In

case of Hopf bifurcation, light patches indicate
the higher moduli and the phase iso-levels, nor-
malised between –1 an 1, are solid or dot lines.
Opposite signs correspond to opposite phases. In
all cases, the stream functions and temperature of
the leading disturbance get opposite symmetries
with respect to the steady state. Consequently,
the resulting bifurcations of the steady states can
not be observed in the academic half-zone con-
figuration.
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FIG. 4. Disturbance stream function at, respec-
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Ma = 106.
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It has been shown by Chenier et al [2] that the
stationary anti-symmetric disturbance, at Pr =
0.01, leads to the existence of non symmetric
stable steady flows which present two counter-
rotating cells of very different sizes.

In case of the here above considered Hopf bi-
furcations, the system (1) − (5), at Marangoni
number values larger that the Mac thresh-
olds, were computed with the non-linear time-
dependent code. The stream functions at two
chosen times of the τ period are presented in Fig.
6, at Pr = 0.002, Ma = 140. The two cells alter-
natively growth and decrease, breaking the sym-
metry around the mid-plane. Despite the discrep-
ancy in the values of the Marangoni numbers, the
flow’s behaviour is very similar at Pr = 0.006,
Ma = 280000 (Fig. 7).
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FIG. 6. Stream function at two times of a period
(t = 0 and t = τ/3 (upper panels) and corre-
sponding details (lower panels) at Pr = 0.002,
Ma = 140.

1

3

5

7

7

9

9

11

11

13

13

15

17

17

17

19

21
23

25

r

z

0 0.25 0.5 0.75 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

3

5

7

9

9

9

11

1 1

13
13

13

15

15

17

17

19 21

23

25

r

z

0 0.25 0.5 0.75 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Ψ(t = 0) Ψ(t = τ/3)

-3.25

-3 -2.75

-2.5

-2.25

-2

-1.75

-1.25

-1

-0.75

-0.5

-0.25

0

0.
25

0.5

1

1.
25

1.5

2.25

3
3.25

4

r

z

0.8 0.85 0.9 0.95 1
-0.1

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

0.1

-4.25

-4 -3.25

-2.75

-2.5

-2.25

-2

-1.75

-1.5

-1.25

-1

-0.75

-0.5

-0.25

0

0.25
0.5

0.75
1

1.75

2.2
5

2.5

2.753.25

r

z

0.8 0.85 0.9 0.95 1
-0.1

-0.075

-0.05

-0.025

0

0.025

0.05

0.075

0.1

FIG. 7. Stream function at two times of a pe-
riod (t = 0 and t = τ/3 (upper panels) and cor-
responding details (lower panels) at Pr = 0.06,
Ma = 280000.

7

9

9

11

11

11

13

13

13

15

15

15

15

17

17

17 17
17

1919

19

19

19

21

21

21

21

23

23

23

25

25

25

27

27

29

r

z

0 0.25 0.5 0.75 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

9

11

11

1113

13

13

15

15

15

17

17

17

17

1919

19

21

21

21

21

23

23

23

23

25

25

25

27

27

27

29

31

r

z

0 0.25 0.5 0.75 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Ψ(t = 0) Ψ(t = τ/3)

FIG. 8. Stream function at two times of a period
(t = 0 and t = τ/3); Pr = 100, Ma = 60000

5



At high Prandtl number values, the flow is mainly
governed by momentum diffusion and its destabi-
lization is due to thermal effects [5]. In Fig. 8 are
shown the stream function contours, at two times
of a period, for Ma = 60000 (Mac = 31647).
The symmetry breaking can be viewed on the
time evolution of the zero stream function line
which oscillates around z = 0. It should be poin-
ted out that no instability has been observed in
the corresponding half zone model at that value
of Pr.

The local kinetic power of the perturbation is
depicted in Fig. 9, in case of transition of hy-
drodynamic origin. When the transition origin is
thermal, the local thermal power of the perturba-
tion is shown (Fig. 10). The values are multi-
plied by r and respectively normalized with the
viscous dissipation 〈Du〉 and the thermal dissipa-
tion 〈Dθ〉. In case of Hopf bifurcations, the mean
values on one period were calculated.

The spatial distributions are linked to the
leading eigenmode structure. However, the com-
parison of Fig. 4 and 9 show that the maxima,
although situated in the same regions of the (r, z)
plane, can not be superposed. All are near the
mid-plane. In case of the Hopf bifurcation at
Pr = 0.002 and Pr = 0.06, the active zone
should be near z = 0, r = 1. Referring to Fig.
6, in this region the upper and lower tori pulse,
breaking the symmetry around the mid-plane. At
Pr = 0.01, the destabilization mechanism was
widely analysed in [2]. It was observed that the
maxima loci of the perturbation stream function
and local energy growth rate correspond to a re-
gion where a vorticity tongue, issued from the
solid/free surface junction, is pinched between
the two contra-rotative cells. The vorticity field
of the steady state at Pr = 0.002 is given in Fig.
11. Here, also, a vorticity tongue is convected
from the solid fronts towards the free surface. On
the z = 0.1 line, the vorticity sign changes twice
between r = 0.6 and r = 1. This can also be
observed at Pr = 0.06 [1]. At high Prandtl num-
ber values, the process is quite different. As ex-
plained by Kasperski at al [5], the temperature in-
tensifies itself alternatively in the upper and lower
part of the cavity. The local energy growth rate

does not throw light on this process.
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Following Wanschura et al [8], a deeper un-
derstanding of the destabilizing mechanisms can
be obtained through the analysis of the magni-
tude, sign and evolution, close to the threshold, of
the different terms in the energy balances. Table
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1 gives, for four Pr regions, the production term
ordered with respect of their absolute value; their
sign, and (algebraic) evolution character as func-
tion of Ma, in the vicinity of the critical Mac

value, are also indicated. At low (Pr,Ma) val-
ues, the destabilazing mechanism being hydrody-
namic, the kinetic energy balance is considered
while at high (Pr,Ma) values, due to the hy-
drothermal aspect of the transition, it is the ther-
mal energy budget.
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FIG. 11. Vorticity field of the steady state at
Pr = 0.002, Ma = 130.

Pr
0.002 I4

u+ ⇑ I5

u− ↑ I2

u+ ↑ I3

u+ ↑
0.01 I4

u+ ↓ I5

u− ⇑ I3

u− ∼ I2

u+ ↓
0.06 I1

θ + ⇑ I2

θ + ↓
20 I1

θ + ⇑ I2

θ + ↓

Table 1. Production dominant terms in mag-
nitude decreasing order with sign and alge-
braic evolution character as a function of Ma.
Double arrows (⇑) indicate the most increasing
behaviour.

In case of Hopf bifurcation, the largest term
is the most growing. At Pr = 0.002, I4

u corre-
sponds to a lift-up mechanism: there is a trans-
port of basic-state momentum perpendicular to

the base flow direction, producing energy by am-
plification of stream-wise perturbation. At high
Pr values, the destabilazing term I1

θ is the rate of
transfer to thermal energy from the temperature
basic state to the perturbation temperature field in
the direction which is perpendicular to the base
flow. The stationary transition at Pr = 0.01 is
quite different: the dominant destabilizing term
is slowly decreasing and the stabilizing term I5

u

which amplitude is half of I4

u, is less and less
negative when Ma increases. I5

u corresponds to
a transport parallel to the base flow direction.

4 Conclusion

We have shown that the first transition type and
mechanism of the axi-symmetric steady state
with increasing Ma value, highly depends on the
Pr values. The symmetry properties of the desta-
bilizing mode are opposite to those of the steady
base-flow giving rise to symmetry breaking. It is
therefore clear that the academic half-zone is not
relevant to the whole dynamics of the full zone
configuration.

The energy analysis does not always pro-
vide clear information on the destabilizing mech-
anisms.
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Université Paris-Sud XI, 2004.

[2] Chénier E, Delcarte C, Kasperski G and
Labrosse G, Sensitivity of the liquid bridge
hydrodynamics to local capillary contribu-
tions, Phys. Fluids, Vol. 14, pp. 3109–3117,
2002.

[3] Chénier E, Delcarte C, Kasperski G and
Labrosse G, Interfacial Fluid Dynamics
and Transport Processes, Lecture notes in
Physics, vol. 628, chap. Thermocapillary

7



flows and vorticity singularity, Springer-
Verlag Heidelberg, pp. 176–199, 2003.

[4] Chénier E, Delcarte C and Labrosse G,
Stability of the axisymmetric buoyant-
capillary flows in a laterally heated liquid
bridge, Phys. Fluids, Vol. 11, No. 3, pp. 527–
541, 1999.

[5] Kasperski G, Batoul A and Labrosse G, Up
to the unsteadiness of axisymmetric thermo-
capillary flows in a laterally heated liquid
bridge, Phys. Fluids, Vol. 12, No. 1, pp. 103–
119, 2000.

[6] Mamun C and Tuckerman L, Asymmetry and
Hopf bifurcation in spherical Couette flow,
Phys. Fluids, Vol. 7, No. 1, pp. 80–91, 1995.
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